Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Use of virtual experiments as learning activity in modern physics course: A case of cathode ray tube experiment

Yıl 2019, Cilt 3, Sayı 2, 43 - 61, 31.12.2019

Öz

Many interactive simulations that may be used in physics teaching/learning process are available online, however most of these simulations are interactive graphics applications that may not present the relationship between experiments and theories sufficiently. On the other hand, it is claimed that virtual experiments may have significant contribution in learning physics theories based on experimental data. Because, virtual experiments that provide opportunity to manipulate variables on real-like experimental setup on the computer screen may succesfully demonstrate the relationship between experiments and physics theories. This study aims to create and evaluate a virtual experiment that may be used for teaching discovery of electron and Thomson atomic model based on experimental data and scientific inquiry. In this context, a virtual experiment of cathode ray tube was created and implemented to group of undergraduate science education students who study modern physics course. Qualitative data obtained from several open-ended questions was analyzed with qualitative content analysis. In this study, with respect to findings obtained from students’ responses, it was concluded that cathode ray tube virtual experiment make a meaningful contribution to comprehend Thomson atomic model and the behaviors of positive and negatif charges in the atoms of current carrying wires. In addition, students seem to think that virtual experiments make complex and abstract modern physics concepts simpler and more concrete.

Kaynakça

  • Bozkurt, E., & Sarıkoç, A. (2008). Fizik eğitiminde sanal laboratuar, geleneksel laboratuarın yerini tutabilir mi. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 25, 89–100.
  • Chen, S. (2010). The view of scientific inquiry conveyed by simulation-based virtual laboratories. Computers & Education, 55(3), 1123–1130.
  • Couture, M. (2004). Realism in the design process and credibility of a simulation based virtual laboratory. Journal of Computer Assisted Learning, 20(1), 40-49.
  • de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
  • dos Santos, F. R., Guetl, C., Bailey, P. H., & Harward, V. J. (2010). Dynamic virtual environment for multiple physics experiments in higher education. Education Engineering (EDUCON), 2010 IEEE, 731-736.
  • Ip, A., & Canale, R. (1996). A model for authoring virtual experiments in web-based courses. In ASCILITE (Vol. 96).
  • Jeschke, S., Thomsen, C., Richter, T., & Scheel, H. (2007). On remote and virtual experiments in eLearning in statistical mechanics and thermodynamics. Paper presented at the Pervasive Computing and Communications Workshops, 2007. PerCom Workshops' 07. Fifth Annual IEEE International Conference on.
  • Kim, J. H., Park, S. T., Lee, H., Yuk, K. C., & Lee, H. (2001). Virtual reality simulations in physics education. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 3(2).
  • Linn, M. C., Chang, H.-Y., Chiu, J. L., Zhang, Z. H., & McElhaney, K. (2011). Can desirable difficulties overcome deceptive clarity in scientific visualizations? In A. S. Benjamin (Ed.), Successful remembering and successful forgetting: A festschrift in honor of Robert A. Bjork (p. 235–258). Psychology Press.
  • Niaz, M. (1998). From cathode rays to alpha particles to quantum of action: A rational reconstruction of structure of the atom and its implications for chemistry textbooks. Science Education, 82(5), 527-552.
  • Singh, C., Belloni, M., & Christian, W. (2006). Improving students' understanding of quantum mechanics. Physics Today, 59(8), 43.
  • Yi, Z., Jian-Jun, J., & Shao-Chun, F. (2005). A LabVIEW-based, interactive virtual laboratory for electronic engineering education. International Journal of Engineering Education, 21(1), 94-102.
  • Zhang, H. Z. (2010, June). Exploring drawing and critique to enhance learning from visualizations. In Proceedings of the 9th International Conference of the Learning Sciences-Volume 2 (pp. 234-235). International Society of the Learning Sciences.
  • Zhou, S., Han, J., Pelz, N., Wang, X., Peng, L., Xiao, H., & Bao, L. (2011). Inquiry style interactive virtual experiments: a case on circular motion. European Journal of Physics, 32(6), 1597.

Sanal Deneylerin Modern Fizik Dersinde Öğrenme Etkinliği Olarak Kullanımı: Katot Işın Tüpü Sanal Deneyi Örneği

Yıl 2019, Cilt 3, Sayı 2, 43 - 61, 31.12.2019

Öz

Fizik öğretme/öğrenme sürecinde faydalanılabilecek çok sayıda etkileşimli simülasyon uygulaması internet ortamında sunulmaktadır, fakat bu simülasyonların çoğunun deneyler ile fizik kuramları arasındaki bağı gösteremeyen etkileşimli grafik uygulamaları olduğu bilinmektedir. Öte yandan sanal deneylerin, fizik kuramlarının deneysel veriye dayalı olarak öğrenilmesine anlamlı katkı sağlayabileceği düşünülmektedir. Çünkü bilgisayar ekranında laboratuvardaki gerçek düzeneğin benzeri olan sanal bir deney düzeneği üzerinde değişken manipülasyonu yapmaya olanak tanıyan sanal deneylerin fizik kuramlarıyla deneyler arasındaki ilişkiyi başarıyla gösterebileceği öngörülmektedir. Bu çalışma, elektronun keşfi ve modern fizik kuramlarından Thomson Atom Modelinin deneysel bulgulara ve sorgulamaya dayalı olarak öğretiminde kullanılabilecek bir sanal deney geliştirmeyi ve öğrencilerin bu sanal deneye verecekleri tepkiyi incelemeyi amaçlamaktadır. Bu bağlamda, araştırma kapsamında katot ışın tüpü sanal deneyi geliştirilip modern fizik dersi alan bir grup üniversite öğrencisine uygulanmış ve bir dizi açık uçlu soru ile toplanan veriler nitel içerik analizi ile çözümlenmiştir. Elde edilen bulgulara dayalı olarak, bu araştırma kapsamında geliştirilen katot ışın tüpü sanal deneyinin, öğrencilerin, elektrik iletimi esnasında pozitif ve negatif yüklerin davranışlarını ve Thomson atom modelini kavramalarına katkı sağladığı sonucuna ulaşılmış ve ayrıca öğrencilerin sanal deneyin karmaşık ve soyut buldukları modern fizik konularını sadeleştirip somutlaştırarak anlaşılır hale getirdiğini düşündükleri anlaşılmıştır.

Kaynakça

  • Bozkurt, E., & Sarıkoç, A. (2008). Fizik eğitiminde sanal laboratuar, geleneksel laboratuarın yerini tutabilir mi. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 25, 89–100.
  • Chen, S. (2010). The view of scientific inquiry conveyed by simulation-based virtual laboratories. Computers & Education, 55(3), 1123–1130.
  • Couture, M. (2004). Realism in the design process and credibility of a simulation based virtual laboratory. Journal of Computer Assisted Learning, 20(1), 40-49.
  • de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
  • dos Santos, F. R., Guetl, C., Bailey, P. H., & Harward, V. J. (2010). Dynamic virtual environment for multiple physics experiments in higher education. Education Engineering (EDUCON), 2010 IEEE, 731-736.
  • Ip, A., & Canale, R. (1996). A model for authoring virtual experiments in web-based courses. In ASCILITE (Vol. 96).
  • Jeschke, S., Thomsen, C., Richter, T., & Scheel, H. (2007). On remote and virtual experiments in eLearning in statistical mechanics and thermodynamics. Paper presented at the Pervasive Computing and Communications Workshops, 2007. PerCom Workshops' 07. Fifth Annual IEEE International Conference on.
  • Kim, J. H., Park, S. T., Lee, H., Yuk, K. C., & Lee, H. (2001). Virtual reality simulations in physics education. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 3(2).
  • Linn, M. C., Chang, H.-Y., Chiu, J. L., Zhang, Z. H., & McElhaney, K. (2011). Can desirable difficulties overcome deceptive clarity in scientific visualizations? In A. S. Benjamin (Ed.), Successful remembering and successful forgetting: A festschrift in honor of Robert A. Bjork (p. 235–258). Psychology Press.
  • Niaz, M. (1998). From cathode rays to alpha particles to quantum of action: A rational reconstruction of structure of the atom and its implications for chemistry textbooks. Science Education, 82(5), 527-552.
  • Singh, C., Belloni, M., & Christian, W. (2006). Improving students' understanding of quantum mechanics. Physics Today, 59(8), 43.
  • Yi, Z., Jian-Jun, J., & Shao-Chun, F. (2005). A LabVIEW-based, interactive virtual laboratory for electronic engineering education. International Journal of Engineering Education, 21(1), 94-102.
  • Zhang, H. Z. (2010, June). Exploring drawing and critique to enhance learning from visualizations. In Proceedings of the 9th International Conference of the Learning Sciences-Volume 2 (pp. 234-235). International Society of the Learning Sciences.
  • Zhou, S., Han, J., Pelz, N., Wang, X., Peng, L., Xiao, H., & Bao, L. (2011). Inquiry style interactive virtual experiments: a case on circular motion. European Journal of Physics, 32(6), 1597.

Ayrıntılar

Birincil Dil Türkçe
Konular Eğitim, Bilimsel Disiplinler
Bölüm Research Articles
Yazarlar

Ertuğrul ÖZDEMİR (Sorumlu Yazar)
ARTVİN ÇORUH ÜNİVERSİTESİ
0000-0002-6057-5944
Türkiye

Yayımlanma Tarihi 31 Aralık 2019
Yayınlandığı Sayı Yıl 2019, Cilt 3, Sayı 2

Kaynak Göster

APA Özdemir, E. (2019). Sanal Deneylerin Modern Fizik Dersinde Öğrenme Etkinliği Olarak Kullanımı: Katot Işın Tüpü Sanal Deneyi Örneği . Studies in Educational Research and Development , 3 (2) , 43-61 . Retrieved from http://serd.artvin.edu.tr/tr/pub/issue/51443/570291

88x31.pngStudies in Educational Research and Development (SERD) dergisi Creative Commons 4.0 ile lisanlanmıştır.